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ABSTRACT 

The aim of this paper is to present a study of the connections between the 
commutants of a Boolean algebra of projections of finite multiplicity and 
the uniformly closed algebra generated by these projections. 

Dieudonn6 [4] has constructed an example of  a Banach space X and a Boolean 
algebra (B.A.) of  projections ~3 of  uniform multiplicity 2 such that for no choice 
of xl  and xz in X a n d 0 ~  Eel3  is2EX the direct sum of  the cyclic subspaces 

spanned by Exl and Ex2. 
In this note, we shall prove that the first commutant of a B.A. of projections 

of  finite multiplicity ~3, having Dieudonn6's above mentioned property (formal 
definition in Section 2), consists of those spectral operators whose scalar parts 

belong to the algebra 9~(~3) generated by ~3 in the uniform operator topology. 
However, we do not know if the nilpotent parts really exist. 

Later, using the previous result, we shall show that if there are no nilpotent 
operators commuting with a B.A. of projections of finite multiplicity ~3, then 

its commutant is commutative, i.e, coincides with the second commutant. Using 
another example of  Dieudonn6 [3] we can conclude that it must not coincide 
with 9~(~3): 

1. Preliminaries. For  convenience we give here some definitions from Bade's 
papers [1] and [2] .A B.A. of projections ~3 will be called complete if for every 
family {E,} _ ~ the projections V E, and AE ,  exist in ~3 and 

(V E~)X = elm {E~X} ; (A E~)X = (") E~X 

A B.A. of projections will be called countably decomposable if every set of dis- 
joint projections of ~ is at most countable. 

The cyclic subspace spanned by a vector x is defined by 

9~R(x) = clm { Ex [ E e ~3 } 
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If ~3 is a complete countably decomposable B.A. of projections in a Banach space 
X there exists a unique multiplicity function m defined on ~ such that m(E) is the 
least cardinal power of a set of cyclic subspaces spanning the range of E e ~ .  

The concept of spectral operator as used here is that which was developed 
by Dunford in [5]. 

Throughout the paper X denotes a fixed Banach space, ~ is a complete countably 
decomposable B.A. of projections of finite uniform multiplicity n i.e., every 

E ~ ~ has multiplicity n, and 9A(~) is the algebra generated by ~ in the 
uniform operator topology. Following [6], !B c will be the commutant of ~ ,  i.e, 
the algebra of all operators commting with every E e ~ ,  and (~  c)c the second 
commutant of ~ ,  i.e., the algebra of all operators which commute with every 
operator commuting with ~3. 

Since ~ can be regarded as the range of a spectral measure E( • ) defined on 
the Borel sets of a compact Hausdorff space f~, to every Borel measurable function 
f we may consider the operator (in general unbounded) 

S ( f ) = f a f ( ~ ) E ( d ~ )  

with the domain 

P 

D<s<:))-- I X,l  J. exists  

where em= {~l lf(og){ =< m}. 

2. Operators commuting witli ~ .  In connection with Dieudonn6's example 
[4] we give the next definition 

DErINmON 1. We shall say that !B is of type (D) if for no choice z~ e X; 
1 < i < n and 0 ~ e E ~  

EX = Ez i Ez i ; l =< p < n 
i L i = p + I  J 

LEMMA 2. Every projection commuting with ~ belongs to it i f  and only i f  

is of type (D). 

Proof. Assume 0 # P ¢ ~c is a projection and denote 

F o = V{EIF,  ,EP=O } 
F =  I - F o  

Since ~ is complete F ~ ~ and obviously PF = P. First, we shall show that Px = 0 
implies Fx = 0. Indeed, if Pxo = 0 for some 0 ~ Xo ~ F X  and 
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then 

n 

FX = V ~l~(Fy,) 
i = 1  

x o = lira )2 S(f~zem)Fy~ 
m~oO i = l  

where em= {co [ co e l'~; [f~(og) [ < m; i = 1, 2, ..., n}; m = 1, 2 , . . . .  For  m suificiently 
large 

0 ~ E(e,~)x o = ~ S(f~)E(em)Fy, 
l = 1  

and we may suppose that S(fn)E(em)Fy n ¢ 0. If  e c em is any Borel set of positive 
measure on which fn satisfies the inequality ( l /m) < If~(og) I < m then 

n--1  

0 ~ E(e)Fy~ = S(f,-1 )E(e)txo - E S(f~f: l)E(e)Fy, 
i = 1  

and, therefore 

E(e)FX = 9J~(E(e)Fxo) V 93~(E(e)F y l) V "'" V ~R(E(e)F yn_ 1) 

In conclusion, there exist systems {0 ~ G e ~ ; G  < F;xo, xl, . . . ,x~_l} such that 

n - - 1  

Gx = V ~(Gx,) .  
i = 0  

For  each such system we can assume that xl , '" ,xn-1 were arranged such that 

PGxo . . . . .  PGxk = 0; k_>_0 

and PGxi ~ 0 for k < i <  n -  1. Now, from all those systems, let us choose 
one for which k is maximal. If  k = n - 1, then PG = 0 which contradicts that 
O¢ G> F; thusO< k < n - 1 .  

Remark that if Pro = 0 for some Vo e GX then, by repeating arguments already 
used in this proof  we can show that 

k 

Vo~ V ~ ( a x 3  
t = 0  

otherwise there exists 0 ~ G1 < G such that 

n - 2  

a l x  = ~(G~vo) V V ~(alx3 
t = O  

and this fact contradicts the maximality of k. Thus V~=0~J~(Gx~) is the null space 
of  the restriction of  P to GX. 
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Now, let us consider all the systems 

such that 

{0 :/: H E ~ ; H  < G;xo, xl, " " , X k , , X k +  l ,  " " , ~ n - 1 }  

H X =  
k n - I  

V 9~(Hx,)V V ~(H~7,) 
i=O i=k+ l  

and (I -- P)H.~k+.i = O; j =  1, . . . , l  while ( I -  P)H.~k+j#O for j = l  + 1,. . . ,  
n - 1 - k. From all these systems choose one for which l is maximal and assume 

that (I - P)wo = 0 for some Wo E HX. Then, by the same kind of argument one 

can easily see that 

k k+l  

Woe V 9Jt(Hxi) V V ~(H.~i) 
i=O i=k+ l  

and further 

k + l  

Woe V ~(H~,) 
i = k + l  

,k+l 19J~(H~i). Hence HX can be i.e., the null space o f / -  P/nx coincides with v i=k+ 
decomposed as a direct sum as follows 

k k+l  

HX = V ffYC(Hxi) ~ V ~(H.~i) 
i=O i = k + l  

where l > 1 since k < n - 1 and H has uniform multiplicity n. This contradiction 

shows that Xo = 0. 
Finally, suppose that P ¢ F. Then P x - F x  :/: 0 for some x E X  and 

P(Px - Fx) = 0; so we get a contradiction to the first part of the proof. Thus 
P = F ~ .  The converse is obvious. Q.E.D. 

THEOREM 3. Let ~ be of type (D). Every operator commuting with ~ is 
spectral and its scalar part belongs to 9A(f~). 

Proof. By Foguel [7, Theorem 2.3 and Lemma 2.2], for every operator 

T E $ c  there corresponds a sequence of Borel sets {am} increasing to f~ and such 

that 

ZE(°~m) = ~ S(fix~,,,)ef,ra Jr Nrn ; m = 1,2, . . .  
i = 1  

where fi; i=  1,2, . . . ,n  are bounded measurable functions, [f/(og)[ < [I T[I a.e.; 

Pl,m, Pz.m,'.',Pn.m disjoint projections commuting with ~ and Nm a nilpotent 
o f  order n. By lemma 2 Pt, m E ~ ;  i = 1 ,2 , . . . ,n ;  m = 1,2,. . . ,  thus 
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TE(~,,) = S(g~) + Nm; m = 1, 2,...  

where gin; m = 1,2, ... are bounded measurable functions and I g-<09>1 --< II z I1 a.e. 
Then, for k < m we shall get 

TE(gk) = S(gmz~) + N, ,E(~)  
hence 

{ S(gm~Gk) = S(gk) 

NmE(eR) = NR 

and further g,.(09) = gk(09) for almost every 09 ~ ek" Denote 

g(09) = gk(09); o9 e ek ; k = 1, 2,.-. 

Then g is a bounded measurable function and 

lim gin(09) = g(09) 
m'-* QO 

for a.e. 09 e f~. By [6 Theorem, IV-10--10] 

lim S(gm)X = S(g)x ; x e X 
n l . - ~  O0 

Now, if N = T - S(g) then 

Nx  = lim Nmx; x e X 
rtl--~ O0 

and, consequently N will be a nilpotent belonging to ~3 c. In conclusion 
T = S(g) + N where S(g) e 9~(~) and N" = 0. Q.E.D. 

COROLLARY 4. Let ~ be of type (D) such that ~ contains no nilpotent operator. 
Then ~Bc=(~3~)~= 9~(~3). 

It can be shown that there are no nilpotent operators commuting with the 
B.A. of projections constructed by Dieudonn6 [4]; thus both its commutants 
coincide with the algebra generated by the B.A. in the uniform operator topology. 

LEMMA 5. For any B.A. of projections of finite uniform multiplicity fB 
there exists 0 v~ Eo e ~ such that 

EoX = X I~)"" ~ )Xk  

where Xj;  j = 1 ,2 , . . . ,k  are subspaces invariant under fB; ~ restricted to X j  
has finite uniform multiplicity n j, (~k= 1 nj = n) and is of type (D). 

Proof .  If  ~3 is of type (D) the assertion is trivial. If  it is not type (D), then we 
can find 0 # F e ~3 and z i e X;  i = 1,2, ..., n such that 

f = l  i = p + l  
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Among all these systems {F[0 # F e ~ ;  z l , . . . , z , }  choose one for which p is 
minimal. Denote 

p n 

X1 = V ~IY~(Fz.,); Y, = V 9J~(Fz,) 
i = l  i = p + l  

Then X1 and Y1 are subspaces invariant under ~ ;  ~ restricted to X~ has finite 
uniform multiplicity p and ~ restricted to I11 has finite uniform multiplicity 
n - p. Furthermore, in view of the minimality of p, ~ restricted to X1 is of type (D). 

Repeating this process for Y1 and so on, wc shall finish the proof after a finite 
number of operations. Q.E.D. 

LE~IA 6. Assume there is no non-trivial nilpotent operator in fB c and let 

T ~ 0 be an operator commuting with lB. Then, there exists E o efB such that 

0 # TEo e (~3c) ~. 

Proof .  D e n o t e  

F o = V { E I E e ~ ;  TE--0}  

F = I - F o .  

Then F E ~ and TF = T # O. Using Lemma 5 for F X  we shall get a projection 
0 # E o =< F;  E o ~  such that 

EoX = X d ~ X 2 ( ~ ' " ( ~ X k  

and ~3 restricted to X j; j = 1,2,..., k is of type (D). Let Pj be the projection 
on X i. Then 

k 
TE o = ~, P i T  

j = l  

and i f j  # h PjTPh is evidently a nilpotent commuting with ~3; thus PjTPh = O. 
But P j T P j  can be considered as an operator in Xi which commutes with ~3/x~. 
Hence by Corollary 4 

PjTEo = P j T P j  = S(f j)Pj;  j = 1, 2,. . . ,  k 

where f j  is a bounded measurable function. Consequently 

k 

TEo = Y~ S ( f  j)P j 
j = l  

and, further, for another operator A which commutes with 

k 

AEo = E S(gj)Ps. 
. I=1  
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Thus 

223 

k 

(TEo)A = (TEo)(AEo) = • S(fj)S(gj)Pj = (AEo)(TEo) = A(TEo) 
j = t  

i.e. TEoe (~3c) c. Finally, let us remark that TEo # 0 since 0 # E o < F. Q.E.D. 

THEOREM 7. Assume there is no non-trivial nilpotent operator in ~3 c. Then 
= 

Proof. Let 0 # T ~ ~3 *. Denote 

and remark that by previous 1emma, ~o  is not void. I f  {E(/~)) is an increasing 
chain in ~3o then by [1 Igmma 2.3] 

A[T VE(a~)]x = A T  lim E(fi,)x = limATE(fi~)x 
7 7 

= limTE(fi~)Ax = [TVE(fi~)]Ax; x ~ X ,  A ~ *  
7 

Thus VEr(~r) ~ ~3o and lemma of Zorn insures the existence of a maximal element 
E(flo) of ~3o. If  TE(£~ - flo) # 0, then by Lemma 6 for the subspace E(fl - flo)X 
one can find E ( a o ) ~ 3 ;  ao c f l -  flo; 0 # TE(ao)~(~B~) ~. Consequently 
E(~o)VE(ao) belongs to ~3o which contradicts the maximality of E(flo). There- 
fore, T = TE(~o) ~ (~3~) ~. Q.E.D. 

COROLLARY 8. Le t~be  a complete countably decomposable B.A. of projec- 
tions containing no projections of infinite uniform multiplicity and such that 
there are no non-trivial nilpotent operators in ~ .  Then ~ ~= (~)~. 

Proof. By [2 Theorem, 3.4] I = V oo__ t E~ = ~ =  1 E~ where E~ ~ ¢ are disjoint 
projections such that if E,, ~ O, it has uniform multiplicity. Hence, our statement 
follows from theorem 7. Q.E.D. 

3. Remarks. a. Dieudonn~ [3] has constructed another example of a B.A. 
of projections ~ of finite uniform multiplicity (n = 2) for which there are no 
non-trivial nilpotent operators in its first commutant and 9~(~) is a proper sub- 
algebra of ~ c = (  3c)*. It shows that in Theorem 7 ~B*=(~*) * must not coincide 
with 9/(~3). 

b. In the decomposition of Tgiven byTheorem 3 a nilpotent part was obtained. 
We do not know if it really exists. The single example of a B.A. of type (D)which 
has been constructed until now is that of Dieudonn6 [4] and one can easily 
show that there is no nilpotent commuting with Dieudonn6's B.A. of projec- 
tions. 
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I f  this is the general case and the commutan t  o f  a B.A. o f  projections o f  type 

(D) always coincides with the algebra 9~(~), then we are able to prove the converse 

o f  Corol lary  8, i.e. commutat ive  o f  the commutan t  implies the absence o f  non-  

trivial nilpotent operators  in the first commutan t .  

1° 
Math. 

2 .  - -  

Amer. 
3. 

35-38. 
4 ,  - - - -  

5. 
6. 

REFERENCES 
W. G. Bade, On Boolean algebras of  projections and algebras of  operators, Trans. Amer. 
Soc. 80 (1955), 345-359. 

, A multiplicity theory for Boolean algebras of  projections on Banach spaces, Trans. 
Math. Soc. 92 (1959), 508-530. 
J. Dieudonn6, Sur la bicommutante d' une alg~bre d' op~rateurs, Portugal Math., 14 (1955), 

, Champs de vecteurs non localement triviaux, Arch. Math., 7 (1956), 6--10. 
N. Dunford, Spectral operators, Pacific J. Math. 4 (1954), 321-354. 
N. Dunford and J. Schwartz, Linear operators, 1, New York Interscience Publishers, 1958. 

7. S. R. Foguel, Boolean algebras or projections of  finite multiplicity, Pacific J. Math., 9 
(1959), 681-693. 

THI~ HEBREW UNIVERSITY 
OF .JERUSALEM 


